Disentangling longitudinal relations between youth cannabis use, peer cannabis use, and conduct problems: developmental cascading links to cannabis use disorder.

Publication cover image

“To determine whether cannabis use during adolescence can increase risk not only for cannabis use disorder (CUD) but also for conduct problems, potentially mediated by exposure to peers who use cannabis.

Change in cannabis use did not predict changes in conduct problems or peer cannabis use over time, controlling for gender, race-ethnicity and socio-economic status.

Cannabis use in adolescence does not appear to lead to greater conduct problems or association with cannabis-using peers apart from pre-existing conduct problems.

Instead, adolescents who (1) increasingly affiliate with cannabis-using peers or (2) have increasing levels of conduct problems are more likely to use cannabis, and this cascading chain of events appears to predict cannabis use disorder in emerging adulthood.”

https://www.ncbi.nlm.nih.gov/pubmed/30457181

https://onlinelibrary.wiley.com/doi/full/10.1111/add.14456

Impact of recreational and medicinal marijuana on surgical patients: A review.

American Journal of Surgery Home

“As medicinal and recreational marijuana use broadens across the United States, knowledge of its effects on the body will become increasingly important to all health care providers, including surgeons.

DATA SOURCES:

We performed a literature review of Pubmed for articles discussing the basic science related to cannabinoids, as well as articles regarding cannabinoid medications, and cannabis use in surgical patients.

CONCLUSIONS:

The primary components in the cannabis plant, tetrahydrocannabinol (THC) and cannabidiol (CBD), have been made available in numerous forms and formulations to treat multiple medical conditions, and recreational access to marijuana is increasing. Of particular importance to the surgeon may be their effects on prolonging intestinal motility, decreasing inflammation, increasing hunger, mitigating pain, and reducing nausea and vomiting. Perioperative use of medicinal or recreational marijuana will become increasingly prevalent, and the surgeon should be aware of the positive and negative effects of these cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/30471810

https://www.americanjournalofsurgery.com/article/S0002-9610(18)31123-1/fulltext

Activating Cannabinoid Receptor 2 Protects Against Diabetic Cardiomyopathy Through Autophagy Induction.

 Image result for frontiers in pharmacology

“Cannabinoid receptor 2 (CB2) has been reported to produce a cardio-protective effect in cardiovascular diseases such as myocardial infarction. Here in this study, we investigated the role of CB2 in diabetic cardiomyopathy (DCM) and its underlying mechanisms.

In conclusion, we initially demonstrated that activating CB2 produced a cardio-protective effect in DCM as well as cardiomyocytes under HG challenge through inducing the AMPK-mTOR-p70S6K signaling-mediated autophagy.”

https://www.ncbi.nlm.nih.gov/pubmed/30459625

“Taken together, in this study, we initially showed that activating CB2 produced a cardio-protective effect in DCM as well as cardiomyocytes under HG challenge through the induction of the AMPK-mTOR-p70S6K signaling-mediated autophagy process. We believe that the findings of this study might enhance our knowledge on the understanding of the pathogenesis and progression of DCM and provide a novel insight in the development of therapeutic strategies against DCM.”

https://www.frontiersin.org/articles/10.3389/fphar.2018.01292/full

Activation of GPR55 induces neuroprotection of hippocampal neurogenesis and immune responses of neural stem cells following chronic, systemic inflammation.

Brain, Behavior, and Immunity

“New neurons are continuously produced by neural stem cells (NSCs) within the adult hippocampus. Numerous diseases, including major depressive disorder and HIV-1 associated neurocognitive disorder, are associated with decreased rates of adult neurogenesis. A hallmark of these conditions is a chronic release of neuroinflammatory mediators by activated resident glia.

Recent studies have shown a neuroprotective role on NSCs of cannabinoid receptor activation. Yet, little is known about the effects of GPR55, a candidate cannabinoid receptor, activation on reductions of neurogenesis in response to inflammatory insult.

In the present study, we examined NSCs exposed to IL-1β in vitro to assess inflammation-caused effects on NSC differentiation and the ability of GPR55 agonists to attenuate NSC injury.

Taken together, these results suggest a neuroprotective role of GPR55 activation on NSCs in vitro and in vivo and that GPR55 provides a novel therapeutic target against negative regulation of hippocampal neurogenesis by inflammatory insult.”

A meta-analysis of the crash risk of cannabis-positive drivers in culpability studies-Avoiding interpretational bias.

Accident Analysis & Prevention

“Culpability studies, a common study design in the cannabis crash risk literature, typically report odds-ratios (OR) indicating the raised risks of a culpable accident. This parameter is of unclear policy relevance, and is frequently misinterpreted as an estimate of the increased crash risk, a practice that introduces a substantial “interpretational bias”.

RESULTS:

The model outperforms the culpability OR in bootstrap analyses. Used on actual study data, the average increase in crash risk is estimated at 1.28 (1.16-1.40). The pooled increased risk of a culpable crash is estimated as 1.42 (95% credibility interval 1.11-1.75), which is similar to pooled estimates using traditional ORs (1.46, 95% CI: 1.24-1.72). The attributable risk fraction of cannabis impaired driving is estimated to lie below 2% for all but two of the included studies.

CONCLUSIONS:

Culpability ORs exaggerate risk increases and parameter uncertainty when misinterpreted as total crash ORs. The increased crash risk associated with THC-positive drivers in culpability studies is low.”

https://www.ncbi.nlm.nih.gov/pubmed/30468948

https://www.sciencedirect.com/science/article/pii/S0001457518304706?via%3Dihub

The level of evidence of medical marijuana use for treating disabilities: a scoping review.

Publication Cover

“There is sufficient evidence that medical marijuana is effective in treating epileptic seizures and chronic pain.

Medical marijuana may improve the level of functioning and quality of life for individuals with certain disabilities.”

https://www.ncbi.nlm.nih.gov/pubmed/30456993

https://www.tandfonline.com/doi/abs/10.1080/09638288.2018.1523952?journalCode=idre20

Cannabinoid receptor agonists reduce the short-term mitochondrial dysfunction and oxidative stress linked to excitotoxicity in the rat brain.

Neuroscience

“The endocannabinoid system (ECS) is involved in a considerable number of physiological processes in the Central Nervous System.

Recently, a modulatory role of cannabinoid receptors (CBr) and CBr agonists on the reduction of the N-methyl-d-aspartate receptor (NMDAr) activation has been demonstrated. Quinolinic acid (QUIN), an endogenous analog of glutamate and excitotoxic metabolite produced in the kynurenine pathway (KP), selectively activates NMDAr and has been shown to participate in different neurodegenerative disorders.

Since the early pattern of toxicity exerted by this metabolite is relevant to explain the extent of damage that it can produce in the brain, in this work we investigated the effects of the synthetic CBr agonist WIN 55,212-2 (WIN) and other agonists (anandamide or AEA, and CP 55,940 or CP) on early markers of QUIN-induced toxicity in rat striatal cultured cells and rat brain synaptosomes.

WIN, AEA and CP exerted protective effects on the QUIN-induced loss of cell viability. WIN also preserved the immunofluorescent signals for neurons and CBr labeling that were decreased by QUIN. The QUIN-induced early mitochondrial dysfunction, lipid peroxidation and reactive oxygen species (ROS) formation were also partially or completely prevented by WIN pretreatment, but not when this CBr agonist was added simultaneously with QUIN to brain synaptosomes.

These findings support a neuroprotective and modulatory role of cannabinoids in the early toxic events elicited by agents inducing excitotoxic processes.”

https://www.ncbi.nlm.nih.gov/pubmed/25446347

https://www.sciencedirect.com/science/article/abs/pii/S0306452214009737?via%3Dihub

The protective effects of Δ9 -tetrahydrocannabinol against inflammation and oxidative stress in rat liver with fructose-induced hyperinsulinemia.

Journal of Pharmacy and Pharmacology banner

“A large amount of fructose is metabolized in the liver and causes hepatic functional damage. Δ9 -tetrahydrocannabinol (THC) is known as a therapeutic agent for clinical and experimental applications.

 

The study aims to investigate the effects of THC treatment on inflammation, lipid profiles and oxidative stress in rat liver with hyperinsulinemia.

 

According to the result, long-term and low-dose THC administration may reduce hyperinsulinemia and inflammation in rats to some extent.”

 

https://www.ncbi.nlm.nih.gov/pubmed/30427077

https://onlinelibrary.wiley.com/doi/abs/10.1111/jphp.13042

Cannabis Systematics at the Levels of Family, Genus, and Species.

Cannabis and Cannabinoid Research cover image

“New concepts are reviewed in Cannabis systematics, including phylogenetics and nomenclature. The family Cannabaceae now includes CannabisHumulus, and eight genera formerly in the Celtidaceae. Grouping CannabisHumulus, and Celtis actually goes back 250 years. Print fossil of the extinct genus Dorofeevia (=Humularia) reveals that Cannabis lost a sibling perhaps 20 million years ago (mya). Cannabis print fossils are rare (n=3 worldwide), making it difficult to determine when and where she evolved. A molecular clock analysis with chloroplast DNA (cpDNA) suggests Cannabis and Humulus diverged 27.8 mya. Microfossil (fossil pollen) data point to a center of origin in the northeastern Tibetan Plateau. Fossil pollen indicates that Cannabis dispersed to Europe by 1.8-1.2 mya. Mapping pollen distribution over time suggests that European Cannabis went through repeated genetic bottlenecks, when the population shrank during range contractions. Genetic drift in this population likely initiated allopatric differences between European Cannabis sativa (cannabidiol [CBD]>Δ9-tetrahydrocannabinol [THC]) and Asian Cannabis indica (THC>CBD). DNA barcode analysis supports the separation of these taxa at a subspecies level, and recognizing the formal nomenclature of C. sativa subsp. sativa and C. sativa subsp. indica. Herbarium specimens reveal that field botanists during the 18th-20th centuries applied these names to their collections rather capriciously. This may have skewed taxonomic determinations by Vavilov and Schultes, ultimately giving rise to today’s vernacular taxonomy of “Sativa” and “Indica,” which totally misaligns with formal C. sativa and C. indica. Ubiquitous interbreeding and hybridization of “Sativa” and “Indica” has rendered their distinctions almost meaningless.”

https://www.ncbi.nlm.nih.gov/pubmed/30426073

https://www.liebertpub.com/doi/10.1089/can.2018.0039

The Endocannabinoid System and Oligodendrocytes in Health and Disease.

 Image result for frontiers in neuroscience“Cannabinoid-based interventions are being explored for central nervous system (CNS) pathologies such as neurodegeneration, demyelination, epilepsy, stroke, and trauma. As these disease states involve dysregulation of myelin integrity and/or remyelination, it is important to consider effects of the endocannabinoid system on oligodendrocytes and their precursors. In this review, we examine research reports on the effects of the endocannabinoid system (ECS) components on oligodendrocytes and their precursors, with a focus on therapeutic implications. Cannabinoid ligands and modulators of the endocannabinoid system promote cell signaling in oligodendrocyte precursor survival, proliferation, migration and differentiation, and mature oligodendrocyte survival and myelination. Agonist stimulation of oligodendrocyte precursor cells (OPCs) at both CB1 and CB2 receptors counter apoptotic processes via Akt/PI3K, and promote proliferation via Akt/mTOR and ERK pathways. CB1 receptors in radial glia promote proliferation and conversion to progenitors fated to become oligodendroglia, whereas CB2 receptors promote OPC migration in neonatal development. OPCs produce 2-arachidonoylglycerol (2-AG), stimulating cannabinoid receptor-mediated ERK pathways responsible for differentiation to arborized, myelin basic protein (MBP)-producing oligodendrocytes. In cell culture models of excitotoxicity, increased reactive oxygen species, and depolarization-dependent calcium influx, CB1 agonists improved viability of oligodendrocytes. In transient and permanent middle cerebral artery occlusion models of anoxic stroke, WIN55212-2 increased OPC proliferation and maturation to oligodendroglia, thereby reducing cerebral tissue damage. In several models of rodent encephalomyelitis, chronic treatment with cannabinoid agonists ameliorated the damage by promoting OPC survival and oligodendrocyte function. Pharmacotherapeutic strategies based upon ECS and oligodendrocyte production and survival should be considered.”

https://www.ncbi.nlm.nih.gov/pubmed/30416422

https://www.frontiersin.org/articles/10.3389/fnins.2018.00733/full