Should Oncologists Recommend Cannabis?

“Cannabis is a useful botanical with a wide range of therapeutic potential. Global prohibition over the past century has impeded the ability to study the plant as medicine. However, delta-9-tetrahydrocannabinol (THC) has been developed as a stand-alone pharmaceutical initially approved for the treatment of chemotherapy-related nausea and vomiting in 1986. The indication was expanded in 1992 to include treatment of anorexia in patients with the AIDS wasting syndrome. Hence, if the dominant cannabinoid is available as a schedule III prescription medication, it would seem logical that the parent botanical would likely have similar therapeutic benefits. The system of cannabinoid receptors and endogenous cannabinoids (endocannabinoids) has likely developed to help us modulate our response to noxious stimuli. Phytocannabinoids also complex with these receptors, and the analgesic effects of cannabis are perhaps the best supported by clinical evidence. Cannabis and its constituents have also been reported to be useful in assisting with sleep, mood, and anxiety. Despite significant in vitro and animal model evidence supporting the anti-cancer activity of individual cannabinoids-particularly THC and cannabidiol (CBD)-clinical evidence is absent. A single intervention that can assist with nausea, appetite, pain, mood, and sleep is certainly a valuable addition to the palliative care armamentarium. Although many healthcare providers advise against the inhalation of a botanical as a twenty-first century drug-delivery system, evidence for serious harmful effects of cannabis inhalation is scant and a variety of other methods of ingestion are currently available from dispensaries in locales where patients have access to medicinal cannabis. Oncologists and palliative care providers should recommend this botanical remedy to their patients to gain first-hand evidence of its therapeutic potential despite the paucity of results from randomized placebo-controlled clinical trials to appreciate that it is both safe and effective and really does not require a package insert.”

https://www.ncbi.nlm.nih.gov/pubmed/31161270

https://link.springer.com/article/10.1007%2Fs11864-019-0659-9

Modulation of the Endocannabinoid System as a Potential Anticancer Strategy.

 Image result for frontiers in pharmacology“Currently, the involvement of the endocannabinoid system in cancer development and possible options for a cancer-regressive effect of cannabinoids are controversially discussed. In recent decades, a number of preclinical studies have shown that cannabinoids have an anticarcinogenic potential. Therefore, especially against the background of several legal simplifications with regard to the clinical application of cannabinoid-based drugs, an extended basic knowledge about the complex network of the individual components of the endocannabinoid system is required. The canonical endocannabinoid system consists of the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol as well as the Gi/o protein-coupled transmembrane cannabinoidreceptors CB1 and CB2. As a result of extensive studies on the broader effect of these factors, other fatty acid derivatives, transmembrane and intracellular receptors, enzymes and lipid transporters have been identified that contribute to the effect of endocannabinoids when defined in the broad sense as “extended endocannabinoid system.” Among these additional components, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid-binding protein family, additional cannabinoid-activated G protein-coupled receptors such as GPR55, members of the transient receptor family, and peroxisome proliferator-activated receptors were identified as targets for possible strategies to combat cancer progression. Other endocannabinoid-related fatty acids such as 2-arachidonoyl glyceryl ether, O-arachidonoylethanolamine, N-arachidonoyldopamine and oleic acid amide showed an effect via cannabinoid receptors, while other compounds such as endocannabinoid-like substances exert a permissive action on endocannabinoid effects and act via alternative intracellular target structures. This review gives an overview of the modulation of the extended endocannabinoid system using the example of anticancer cannabinoid effects, which have been described in detail in preclinical studies.”

https://www.ncbi.nlm.nih.gov/pubmed/31143113

“In addition to the palliative effects of cannabinoid compounds in cancer treatment, the endocannabinoid system provides several targets for systemic anticancer treatment. Accordingly, preclinical studies suggest cannabinoids inhibit cancer progression via inhibition of cancer cell proliferation, neovascularization, invasion and chemoresistance, as well as induction of apoptosis, autophagy and increase of tumor immune surveillance.”

https://www.frontiersin.org/articles/10.3389/fphar.2019.00430/full

5-Chlorobenzofuran-2-carboxamides: From allosteric CB1 modulators to potential apoptotic antitumor agents.

European Journal of Medicinal Chemistry“Cannabinoids as THC and the CB1 allosteric modulator CBD were reported to have antiproliferative activities with no reports for other CB1 allosteric modulators as the 5-chloroindole-2-carboxamide derivatives and their furan congeners. Based on the antiproliferative activity of two 5-chlorobenzofuran-2-carboxamide allosteric CB1 modulators, a series of novel derivatives was designed and synthesized. The synthesized compounds were tested in a cell viability assay using human mammary gland epithelial cell line (MCF-10A) where all the compounds exhibited no cytotoxic effects and more than 85% cell viability at a concentration of 50 μM. Some derivatives showed good antiproliferative activities against tumor cells as compounds 8, 15, 21 and 22. The most active compound 15 showed equipotent activity to doxorubicin. Compounds 7, 9, 15, 16, 21 and 22 increased the level of active caspase 3 by 4-8 folds, compared to the control cells in MCF-7 cell line and doxorubicin as a reference drug. Compounds 15 and 21, the most activecaspase-3 inducers, increase the levels of caspase 8 and 9 indicating activation of both intrinsic and extrinsic pathways and showed potent induction of Bax, down-regulation of Bcl-2 protein levels and over-expression of Cytochrome C levels in MCF-7 cell lines. Compound 15 exhibited cell cycle arrest at the Pre-G1 and G2/M phases in the cell cycle analysis of MCF-7 cell line. The drug Likeness profile of the synthesized compounds showed that all the compounds were predicted to have high oral absorption complying with different pharmacokinetics filters.”

https://www.ncbi.nlm.nih.gov/pubmed/31128433

https://www.sciencedirect.com/science/article/pii/S0223523419304507?via%3Dihub

Cannabinoids: Current and Future Options to Treat Chronic and Chemotherapy-Induced Neuropathic Pain.

“Increases in cancer diagnosis have tremendous negative impacts on patients and their families, and major societal and economic costs. The beneficial effect of chemotherapeutic agents on tumor suppression comes with major unwanted side effects such as weight and hair loss, nausea and vomiting, and neuropathic pain. Chemotherapy-induced peripheral neuropathy (CIPN), which can include both painful and non-painful symptoms, can persist 6 months or longer after the patient’s last chemotherapeutic treatment. These peripheral sensory and motor deficits are poorly treated by our current analgesics with limited effectiveness. Therefore, the development of novel treatment strategies is an important preclinical research focus and an urgent need for patients. Approaches to prevent CIPN have yielded disappointing results since these compounds may interfere with the anti-tumor properties of chemotherapeutic agents. Nevertheless, the first (serotonin noradrenaline reuptake inhibitors [SNRIs], anticonvulsants, tricyclic antidepressants) and second (5% lidocaine patches, 8% capsaicin patches and weak opioids such as tramadol) lines of treatment for CIPN have shown some efficacy. The clinical challenge of CIPN management in cancer patients and the need to target novel therapies with long-term efficacy in alleviating CIPN are an ongoing focus of research. The endogenous cannabinoid system has shown great promise and efficacy in alleviating CIPN in preclinical and clinical studies. In this review, we will discuss the mechanisms through which the platinum, taxane, and vinca alkaloid classes of chemotherapeutics may produce CIPN and the potential therapeutic effect of drugs targeting the endocannabinoid system in preclinical and clinical studies, in addition to cannabinoid compounds diffuse mechanisms of action in alleviation of CIPN.”

https://www.ncbi.nlm.nih.gov/pubmed/31127530

https://link.springer.com/article/10.1007%2Fs40265-019-01132-x

Down-Regulation of Cannabinoid Type 1 (CB1) Receptor and its Downstream Signaling Pathways in Metastatic Colorectal Cancer.

 cancers-logo“Changes in the regulation of endocannabinoid production, together with an altered expression of their receptors are hallmarks of cancer, including colorectal cancer (CRC). Although several studies have been conducted to understand the biological role of the CB1 receptor in cancer, little is known about its involvement in the metastatic process of CRC. The aim of this study was to investigate the possible link between CB1 receptor expression and the presence of metastasis in patients with CRC, investigating the main signaling pathways elicited downstream of CB1 receptor in colon cancer. Fifty-nine consecutive patients, with histologically proven colorectal cancer, were enrolled in the study, of which 30 patients with synchronous metastasis, at first diagnosis and 29 without metastasis. A low expression of CB1 receptor were detected in primary tumor tissue of CRC patients with metastasis and consequently, we observed an alteration of CB1 receptor downstream signaling. These signaling routes were also altered in intestinal normal mucosa, suggesting that, normal mucosa surrounding the tumor provides a realistic picture of the molecules involved in tissue malignant transformation. These observations contribute to the idea that drugs able to induce CB1 receptor expression can be helpful in order to set new anticancer therapeutic strategies.”

https://www.ncbi.nlm.nih.gov/pubmed/31121931

https://www.mdpi.com/2072-6694/11/5/708

Medical Cannabis Use in Glioma Patients Treated at a Comprehensive Cancer Center in Florida.

View details for Journal of Palliative Medicine cover image

“Glioma is a devastating primary tumor of the central nervous system with difficult-to-manage symptoms.

Cannabis products have been postulated to potentially benefit glioma patients. Recent state legalization allowed investigators an opportunity to study glioma patients’ adoption of medical marijuana (MM).

Objective: Our goals were to: (1) determine the prevalence of marijuana use, both through physician recommendation and self-medication, and (2) evaluate its perceived risks and benefits in glioma patients.

Results: A total of 73 patients were surveyed. The majority of participants were aware that MM was legal in the state, and most reported learning of this through the media. Over 70% of participants reported having considered using MM, and a third reported using marijuana products after their diagnosis. Most received recommendations from friends/family rather than a medical provider, and only half of the users had obtained a physician’s recommendation. Users generally reported benefits.

Conclusions: With the increasing national conversation that accompanies legalization, glioma patients are pursuing marijuana for the treatment for their symptoms. More research and education is needed to bring health care providers into the conversation.”

“A glioma is a primary brain tumor that originates from the supportive cells of the brain, called glial cells.” http://neurosurgery.ucla.edu/body.cfm?id=159
“Remarkably, cannabinoids kill glioma cells selectively and can protect non-transformed glial cells from death.” https://www.ncbi.nlm.nih.gov/pubmed/15275820
“A meta-analysis of 34 in vitro and in vivo studies of cannabinoids in glioma reported that all but one study confirmed that cannabinoids selectively kill tumor cells.”  https://www.cancer.gov/about-cancer/treatment/cam/hp/cannabis-pdq#section/_7
“Since cannabinoids kill tumor cells without toxicity on their non transformed counterparts, they can represent a class of new potential anticancer drugs.”                                        http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835116/ 

Cannabidiol Enhances the Therapeutic Effects of TRAIL by Upregulating DR5 in Colorectal Cancer.

Image result for Cancers (Basel) journal

“Cannabidiol, a major non-psychotomimetic compound derived from Cannabis sativa, is a potential therapeutic agent for a variety of diseases such as inflammatory diseases, chronic neurodegenerative diseases, and cancers.

Here, we found that the combination of cannabidiol and TNF-related apoptosis-inducing ligand (TRAIL) produces synergistic antitumor effects in vitro. However, this synergistic effect was not observed in normal colonic cells. The levels of ER stress-related proteins, including C/EBP homologous protein (CHOP) and phosphorylated protein kinase RNA-like ER kinase (PERK) were increased in treatment of cannabidiol.

Cannabidiol enhanced significantly DR5 expression by ER stress. Knockdown of DR5 decreased the combined effect of cannabidioland TRAIL. Additionally, the combination of TRAIL and cannabidiol decreased tumor growth in xenograft models.

Our studies demonstrate that cannabidiol enhances TRAIL-induced apoptosis by upregulating DR5 and suggests that cannabidiol is a novel agent for increasing sensitivity to TRAIL.”

https://www.ncbi.nlm.nih.gov/pubmed/31075907

Using Cannabis to Treat Cancer-Related Pain.

Seminars in Oncology Nursing

“OBJECTIVE: To describe which cannabinoids and terpenes are effective for treating pain.

CONCLUSION: Cannabis and cannabinoid medicines, as modulators of the endocannabinoid system, offer novel therapeutic options for the treatment of cancer-related pain, not only for patients who do not respond to conventional therapies, but also for patients who prefer to try cannabis as a first treatment option.

IMPLICATIONS FOR NURSING PRACTICE: Understanding the endocannabinoid system, cannabinoids, terpenes, routes of administration, potential drug interactions, clinical implications, and potential side effects ensures nurses can better assist patients who use cannabis for the treatment of cancer pain.”

https://www.ncbi.nlm.nih.gov/pubmed/31053395

https://www.sciencedirect.com/science/article/pii/S0749208119300609?via%3Dihub

Chemotherapy-induced cachexia dysregulates hypothalamic and systemic lipoamines and is attenuated by cannabigerol.

Publication cover image

“Muscle wasting, anorexia, and metabolic dysregulation are common side-effects of cytotoxic chemotherapy, having a dose-limiting effect on treatment efficacy, and compromising quality of life and mortality.

Extracts of Cannabis sativa, and analogues of the major phytocannabinoid Δ9-tetrahydrocannabinol, have been used to ameliorate chemotherapy-induced appetite loss and nausea for decades. However, psychoactive side-effects limit their clinical utility, and they have little efficacy against weight loss.

We recently established that the non-psychoactive phytocannabinoid (CBG) stimulates appetite in healthy rats, without neuromotor side-effects. The present study assessed whether CBG attenuates anorexia and/or other cachectic effects induced by the broad-spectrum chemotherapy agent cisplatin.

RESULTS:

CBG (120 mg/kg) modestly increased food intake, predominantly at 36-60hrs (p<0.05), and robustly attenuated cisplatin-induced weight loss from 6.3% to 2.6% at 72hrs (p<0.01). Cisplatin-induced skeletal muscle atrophy was associated with elevated plasma corticosterone (3.7 vs 13.1ng/ml, p<0.01), observed selectively in MHC type IIx (p<0.05) and IIb (p<0.0005) fibres, and was reversed by pharmacological rescue of dysregulated Akt/S6-mediated protein synthesis and autophagy processes. Plasma metabonomic analysis revealed cisplatin administration produced a wide-ranging aberrant metabolic phenotype (Q2Ŷ=0.5380, p=0.001), involving alterations to glucose, amino acid, choline and lipid metabolism, citrate cycle, gut microbiome function, and nephrotoxicity, which were partially normalized by CBG treatment (Q2Ŷ=0.2345, p=0.01). Lipidomic analysis of hypothalami and plasma revealed extensive cisplatin-induced dysregulation of central and peripheral lipoamines (29/79 and 11/26 screened, respectively), including reversible elevations in systemic N-acyl glycine concentrations which were negatively associated with the anti-cachectic effects of CBG treatment.

CONCLUSIONS:

Endocannabinoid-like lipoamines may have hitherto unrecognized roles in the metabolic side-effects associated with chemotherapy, with the N-acyl glycine subfamily in particular identified as a potential therapeutic target and/or biomarker of anabolic interventions. CBG-based treatments may represent a novel therapeutic option for chemotherapy-induced cachexia, warranting investigation in tumour-bearing cachexia models.”

https://www.ncbi.nlm.nih.gov/pubmed/31035309

Cannabigerol (CBG) is one of the major phytocannabinoids present in Cannabis sativa L. that is attracting pharmacological interest because it is non-psychotropic and is abundant in some industrial hemp varieties. The results indicate that CBG is indeed effective as regulator of endocannabinoid signaling.”
“Cannabigerol displayed significant antitumor activity.” https://link.springer.com/article/10.1007/BF02976895
Antitumor activity of cannabigerol against human oral epitheloid carcinoma cells. Cannabigerol exhibited the highest growth-inhibitory activity against the cancer cell lines.” https://www.ncbi.nlm.nih.gov/pubmed/9875457

The Endocannabinoid System as a Target in Cancer Diseases: Are We There Yet?

Image result for frontiers in pharmacology

“The endocannabinoid system (ECS) has been placed in the anti-cancer spotlight in the last decade. The immense data load published on its dual role in both tumorigenesis and inhibition of tumor growth and metastatic spread has transformed the cannabinoid receptors CB1 (CB1R) and CB2 (CB2R), and other members of the endocannabinoid-like system, into attractive new targets for the treatment of various cancer subtypes.

Although the clinical use of cannabinoids has been extensively documented in the palliative setting, clinical trials on their application as anti-cancer drugs are still ongoing. As drug repurposing is significantly faster and more economical than de novo introduction of a new drug into the clinic, there is hope that the existing pharmacokinetic and safety data on the ECS ligands will contribute to their successful translation into oncological healthcare.

CB1R and CB2R are members of a large family of membrane proteins called G protein-coupled receptors (GPCR). GPCRs can form homodimers, heterodimers and higher order oligomers with other GPCRs or non-GPCRs. Currently, several CB1R and CB2R-containing heteromers have been reported and, in cancer cells, CB2R form heteromers with the G protein-coupled chemokine receptor CXCR4, the G protein-coupled receptor 55 (GPR55) and the tyrosine kinase receptor (TKR) human V-Erb-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog 2 (HER2).

These protein complexes possess unique pharmacological and signaling properties, and their modulation might affect the antitumoral activity of the ECS. This review will explore the potential of the endocannabinoid network in the anti-cancer setting as well as the clinical and ethical pitfalls behind it, and will develop on the value of cannabinoid receptor heteromers as potential new targets for anti-cancer therapies and as prognostic biomarkers.”

https://www.ncbi.nlm.nih.gov/pubmed/31024307

https://www.frontiersin.org/articles/10.3389/fphar.2019.00339/full