Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science.

Related image

“Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described.

Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain.

OBJECTIVE:

Review the medical literature for the use of cannabis/cannabinoids in the treatment of migraine, headache, facial pain, and other chronic pain syndromes, and for supporting evidence of a potential role in combatting the opioid epidemic. Review the medical literature involving major and minor cannabinoids, primary and secondary terpenes, and flavonoids that underlie the synergistic entourage effects of cannabis. Summarize the individual medicinal benefits of these substances, including analgesic and anti-inflammatory properties.

CONCLUSION:

There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain-specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease-targeted therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/30152161

Variability of Multiple Sclerosis Spasticity Symptoms in Response to THC:CBD Oromucosal Spray: Tracking Cases through Clinical Scales and Video Recordings.

Logo Case Reports in Neurology

“Multiple sclerosis (MS) is an inflammatory and neurodegenerative autoimmune demyelinating disease of the central nervous system. Patients exhibit heterogeneous patterns of disabling symptoms, including spasticity. In the majority of patients with MS spasticity, it and its associated symptoms contribute to disability, interfere with performance of everyday activities, and impair quality of life. Even under treatment with oral antispasticity drugs, about a third of patients continue to experience spasticity of moderate to severe intensity, underscoring the need for additional treatment options.

The efficacy of tetrahydrocannabinol: cannabidiol (THC:CBD) oromucosal spray as add-on therapy in patients with refractory MS spasticity has been demonstrated in clinical trials and observational studies.

To gain insight into patients’ response to treatment at the individual level, in-depth changes from baseline in various clinical scales and video-assessed parameters were evaluated in patients with resistant MS spasticity before and after 1 month of treatment with THC:CBD oromucosal spray. All 6 patients showed ≥20% improvement in the spasticity Numerical Rating Scale (i.e., were initial responders to treatment), but displayed individual variability in other spasticity-related parameters.

Improved Modified Ashworth Scale scores were observed in 5 cases, with a reduction of -2/-3 points in lower limb scores for 1 patient who also showed benefit in terms of a more stable gait but modest improvement in the timed 10-meter walk test (10MWT). Improvement in the 10MWT (or 25-foot walk test) was noted in 4 of the 6 cases. THC:CBD oromucosal spray also improved upper limb function as indicated by faster 9-Hole Peg Test results.”

A Brief Background on Cannabis: From Plant to Medical Indications.

 Ingenta Connect

“Cannabis has been used as a medicinal plant for thousands of years.

As a result of centuries of breeding and selection, there are now over 700 varieties of cannabis that contain hundreds of compounds, including cannabinoids and terpenes.

Cannabinoids are fatty compounds that are the main biological active constituents of cannabis. Terpenes are volatile compounds that occur in many plants and have distinct odors.

Cannabinoids exert their effect on the body by binding to receptors, specifically cannabinoid receptors types 1 and 2. These receptors, together with endogenous cannabinoids and the systems for synthesis, transport, and degradation, are called the Endocannabinoid System.

The two most prevalent and commonly known cannabinoids in the cannabis plant are delta-9-tetrahydrocannabinol (THC) and cannabidiol.

The speed, strength, and type of effects of cannabis vary based on the route of administration. THC is rapidly distributed through the body to fatty tissues like the brain and is metabolized by the cytochrome P450 system to 11-hydroxy-THC, which is also psychoactive.

Cannabis and cannabinoids have been indicated for several medical conditions.

There is evidence of efficacy in the symptomatic treatment of nausea and vomiting, pain, insomnia, post-traumatic stress disorder, anxiety, loss of appetite, Tourette’s syndrome, and epilepsy. Cannabis has also been associated with treatment for glaucoma, Huntington’s Disease, Parkinson’s Disease, and dystonia, but there is not good evidence to support its efficacy. Side effects of cannabis include psychosis and anxiety, which can be severe.

Here, we provided a summary of the history of cannabis, its pharmacology, and its medical uses.”

https://www.ncbi.nlm.nih.gov/pubmed/30139415

Optimization Of A Preclinical Therapy Of Cannabinoids In Combination With Temozolomide Against Glioma.

 Biochemical Pharmacology “Glioblastoma multiforme (GBM) is the most frequent and aggressive form of brain cancer. These features are explained at least in part by the high resistance exhibited by these tumors to current anticancer therapies. Thus, the development of novel therapeutic approaches is urgently needed to improve the survival of the patients suffering this devastating disease.

Δ9-Tetrahydrocannabinol (THC, the major active ingredient of marijuana), and other cannabinoids have been shown to exert antitumoral actions in animal models of cancer, including glioma. The mechanism of these anticancer actions relies, at least in part, on the ability of these compounds to stimulate autophagy-mediated apoptosis in tumor cells.

Previous observations from our group demonstrated that local administration of THC (or of THC + CBD at a 1:1 ratio, a mixture that resembles the composition of the cannabinoid-based medicine Sativex®) in combination with Temozolomide, the benchmark agent for the treatment of GBM, synergistically reduces the growth of glioma xenografts.

With the aim of optimizing the possible clinical utilization of cannabinoids in anti-GBM therapies, in this work we explored the anticancer efficacy of the systemic administration of cannabinoids in combination with TMZ in preclinical models of glioma.

Our results show that oral administration of THC+CBD (Sativex-like extracts) in combination with TMZ produces a strong antitumoral effect in both subcutaneous and intracranial glioma cell-derived tumor xenografts. In contrast, combined administration of Sativex-like and BCNU (another alkylating agent used for the treatment of GBM which share structural similarities with the TMZ) did not show a stronger effect than individual treatments.

Altogether, our findings support the notion that the combined administration of TMZ and oral cannabinoids could be therapeutically exploited for the management of GBM.”

https://www.ncbi.nlm.nih.gov/pubmed/30125556

https://www.sciencedirect.com/science/article/abs/pii/S0006295218303496

Effect of chronic THC administration in the reproductive organs of male mice, spermatozoa and in vitro fertilization.

Biochemical Pharmacology

“The increased use of cannabis as a therapeutic drug in recent years has raised some concerns due to its potential effects on reproductive health. With regards to the male, the endocannabinoid system is involved in the spermatogenesis and in the sperm function.

The chronic use of tetrahidrocannabinol (THC) has been associated with sperm anomalies, decreased sperm motility and structural changes in the testis. However, whether THC affects sperms ability to fertilize and to generate embryos remains unclear.

The aim of this study was to evaluate this effect using a mice model of THC chronic treatment. For this purpose, a chronic treatment with THC was carried out. Mice were randomly allocated into two groups: an experimental group treated with a daily dose of 10 mg/kg-body weight THC for a period of 30 days and a control group treated with a vehicle.

The THC-mice cortex showed a significant decrease of mRNA of Cnr1 compared to control-mice while, in the testis, the expression of Cnr1 was not affected. The weight of testis and epididymis and the histological analysis did not show any change between groups.

On the other hand, no changes were observed in the sperm motility or the sperm concentration. The chronic use of THC did not generate any methylation change in the three CpG regions of Cnn1 analysed, neither in the brain nor in the embryos generated by in vitro fertilization (IVF).

Finally, the embryo production by IVF was no different using spermatozoa from both THC and control mice. This work contradicts the belief that THC consumption has a negative effect on male reproductive processes.”

Brain activity of anandamide: a rewarding bliss?

 

Image result for aps acta pharmacologica

“Anandamide is a lipid mediator that acts as an endogenous ligand of CB1 receptors. These receptors are also the primary molecular target responsible for the pharmacological effects of Δ9-tetrahydrocannabinol, the psychoactive ingredient in Cannabis sativa.

Several studies demonstrate that anandamide exerts an overall modulatory effect on the brain reward circuitry. Several reports suggest its involvement in the addiction-producing actions of other abused drugs, and it can also act as a behavioral reinforcer in animal models of drug abuse.

Importantly, all these effects of anandamide appear to be potentiated by pharmacological inhibition of its metabolic degradation. Enhanced brain levels of anandamide after treatment with inhibitors of fatty acid amide hydrolase, the main enzyme responsible for its degradation, seem to affect the rewarding and reinforcing actions of many drugs of abuse.

In this review, we will provide an overview from a preclinical perspective of the current state of knowledge regarding the behavioral pharmacology of anandamide, with a particular emphasis on its motivational/reinforcing properties. We will also discuss how modulation of anandamide levels through inhibition of enzymatic metabolic pathways could provide a basis for developing new pharmaco-therapeutic tools for the treatment of substance use disorders.”

Long-Term Heavy Recreational Cannabis Use and Serum Delta-9-Tetrahydrocannabinol Levels are not Associated with an Impaired Liver Function in Cannabis Dependents.

Publication Cover

“To shed more light on the influence of chronic cannabis use on liver function, we performed a post-hoc analysis of routine lab data of 42 inpatient treatment-seeking (9 female, median: 27 years old) pure cannabis dependents. Serum liver function tests (LFT: transaminases, bilirubin), C-reactive protein (CRP), carbohydrate-deficient transferrin (CDT), and body mass index (BMI) were considered. The LFT were correlated with CDT, BMI, and cannabis-related clinical data (CR); i.e., the serum levels of delta-9-tetrahydrocannabinol (THC) and its major metabolites 11-hydroxy-delta-9-tetrahydrocannabinol (THC-OH) and 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH), plus the cannabis-history data. The LFT was normal in 32 (76.2%) patients. There was no significant association of LFT with BMI, CRP, CDT, and CR. No significant differences were found between the group with elevated LFT (N = 10) and the group without elevated LFT (N = 32) regarding BMI, CRP, CDT, and CR, except for THC-OH, which was even lower in the elevated-LFT group. These results argue against a relevant harmful impact of chronic cannabis inhalation on the liver function of relatively healthy humans (apart from nicotine dependence). Specifically, the liver function tests were not significantly influenced by THC and THC-COOH levels, both objective markers for the amount and duration of prior cannabis use.”

https://www.ncbi.nlm.nih.gov/pubmed/30052163

https://www.tandfonline.com/doi/abs/10.1080/02791072.2018.1482031?journalCode=ujpd20

Interferon- α-mediated Activation of T Cells from Healthy and HIV-infected Individuals is Suppressed by Δ 9 -Tetrahydrocannabinol

Journal of Pharmacology and Experimental Therapeutics

“HIV patients routinely use medicinal cannabinoids to treat neuropathic pain, anxiety, and HIV-associated wasting. However, Δ 9 -Tetrahydrocannabinol (THC), the primary psychoactive cannabinoid in cannabis, suppresses T cell function and secretion of interferons, both critically important in the anti-viral immune response.

Interferon- α (IFN α), a key cytokine in T cell activation and peripheral control of HIV infection, can potentiate responsiveness to IL-7, a crucial homeostatic cytokine for peripheral T cell maintenance. . The objective of this investigation was to compare the response of T cells to stimulation by IFNα and IL-7 in T cells from healthy and HIV+ donors in the absence and presence of THC.

T cells from healthy and HIV+ donors were stimulated in vitrowith IFN α and IL-7 in the absence and presence of THC followed by measurements of signaling events through IFNAR, IFN α-induced expression of IL-7Rα, cognate signaling through IL-7R, and on IL-7-mediated T cell proliferation by flow cytometry and RT-qPCR. CD8+ T cells from HIV+ donors showed a diminished response to IFN α-induced pSTAT1 compared to CD8+ T cells from healthy donors while CD4+ T cells from HIV+ donors and healthy donors were comparable. Treatment with IFN α promoted IL-7R expression and potentiated IL-7-induced STAT5 phosphorylation to augment IL-7-mediated proliferation by T cells from healthy and HIV+ donors. Finally, HIV+ donors exhibited reduced sensitivity to THC-mediated suppression by IFN α and IL-7-mediated stimulation compared to healthy donors.

These results further support THC as immune suppressive while identifying putatively beneficial aspects of cannabinoid-based therapies in HIV+ patients.

Tetrahydrocannabinol/Cannabidiol Oromucosal Spray in Patients With Multiple Sclerosis: A Pilot Study on the Plasma Concentration-Effect Relationship.

 Image result for ovid journal

“We aimed to assess the potential relationship between intrasubject 9-tetrahydrocannabinol/cannabidiol (THC/CBD) oromucosal spray plasma profiles and clinical effects elicited by subacute dosing in chronically treated patients with multiple sclerosis (MS).

METHODS:

The study design was pilot, single center, open, and prospective. The patients were challenged with a morning test dose of 2 THC/CBD sprays at a 15-minute interval. Venous blood samples were collected before the first spray administration and every 30 minutes after the second spray, until 240 minutes postdosing. Patients rated their spasticity by the Numerical Rating Scale (NRS) simultaneously with blood drawings. Postural and motor tests were performed before the first spray and 90 and 180 minutes thereafter.

RESULTS:

Twelve patients were recruited. Peak plasma concentrations of THC/CBD largely varied among patients, from 0.60 to 13.29 ng/mL for THC and 0.55 to 11.93 ng/mL for CBD. Time to peak plasma concentrations ranged from 150 to 240 minutes for THC and 90 to 240 minutes for CBD. Patients’ NRS serial scores decreased after dosing, from a median value of 6 to 3.5 (P < 0.001). A significant inverse correlation was observed between median intrasubject repeated NRS scores and corresponding median values of both THC (P < 0.01) and CBD (P < 0.002) plasma concentrations. No significant effect of cannabinoids dosing could be appreciated according to posturographic and motor tests.

CONCLUSIONS:

Our kinetic dynamic findings from THC/CBD oromucosal spray are the first obtained in real MS patients. Although preliminary, they suggest that subacute dosing might elicit a subjective clinically significant effect on MS-related spasticity, paralleling cannabinoids measurable plasma concentrations.”

https://www.ncbi.nlm.nih.gov/pubmed/30024443

[Should ophtalmologists recommend medical cannabis to patients with glaucoma?]

 Image result for ugeskr laeger

“Cannabis has been widely used for various medical purposes since before year 2000 BC. Its effects are mediated by cannabinoids and stimulation of mainly G-protein coupled cannabinoid receptors.

In 1971, subjects who smoked marihuana, showed a decrease in the intraocular pressure.

Later investigations additionally revealed a neuroprotective effect of both ∆-9-tetrahydrocannabinol and cannabidiol (CBD).

Furthermore, CBD was found to promote neurogenesis. The aim of this review is to provide an overview of the potential use of cannabinoids in the treatment of glaucoma.”

https://www.ncbi.nlm.nih.gov/pubmed/30020072