Conversion of Cannabidiol (CBD) Into Psychotropic Cannabinoids Including Tetrahydrocannabinol (THC): A Controversy in the Scientific Literature

PubMed Overview “Cannabidiol (CBD) is a naturally occurring, non-psychotropic cannabinoid of the hemp plant Cannabis sativa L. and has been known to induce several physiological and pharmacological effects. While CBD is approved as a medicinal product subject to prescription, it is also widely sold over the counter (OTC) in the form of food supplements, cosmetics and electronic cigarette liquids. However, regulatory difficulties arise from its origin being a narcotic plant or its status as an unapproved novel food ingredient.

Regarding the consumer safety of these OTC products, the question whether or not CBD might be degraded into psychotropic cannabinoids, most prominently tetrahydrocannabinol (THC), under in vivo conditions initiated an ongoing scientific debate. This feature review aims to summarize the current knowledge of CBD degradation processes, specifically the results of in vitro and in vivo studies. Additionally, the literature on psychotropic effects of cannabinoids was carefully studied with a focus on the degradants and metabolites of CBD, but data were found to be sparse.

While the literature is contradictory, most studies suggest that CBD is not converted to psychotropic THC under in vivo conditions. Nevertheless, it is certain that CBD degrades to psychotropic products in acidic environments. Hence, the storage stability of commercial formulations requires more attention in the future.”

https://pubmed.ncbi.nlm.nih.gov/32503116/

 

A Pilot Randomised Placebo-Controlled Trial of Cannabidiol to Reduce Severe Behavioural Problems in Children and Adolescents With Intellectual Disability

 British Journal of Clinical Pharmacology“Introduction: Severe Behavioural Problems (SBP) are a major contributor to morbidity in children with Intellectual Disability (ID). Medications used to treat SBP in ID are associated with a high risk of side effects. Cannabidiol has potential therapeutic effects in SBP. This pilot study aimed to investigate the feasibility of conducting a randomized placebo-controlled trial of cannabidiol to reduce SBP in children with ID.

Methods: Double-blind, placebo-controlled, two-armed, parallel-design, randomised controlled trial of cannabidiol in children aged 8 – 16 years with ID and SBP. Participants were randomized 1:1 to receive either 98% cannabidiol in oil (Tilray, Canada) or placebo orally for 8 weeks. The dose was up-titrated over 9 days to 20mg/kg/day in two divided doses, with a maximum dose of 500mg twice/day. The feasibility and acceptability of all study components were assessed.

Results: Eight children were randomised, and all completed the full study protocol. There were no Serious Adverse Events or drop-outs. Protocol adherence for key study components was excellent: study visits 100%, medication adherence 100%, blood tests 92%, and questionnaire completion 88%. Parents reported a high degree of acceptability with the study design. All parents reported they would recommend the study to other families with children with similar problems. There was an efficacy signal in favour of active drug.

Conclusions: The findings suggest that the study protocol is feasible and acceptable to patients with ID and SBP and their families.”

https://pubmed.ncbi.nlm.nih.gov/32478863/

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bcp.14399

Pharmacological Data of Cannabidiol- And Cannabigerol-Type Phytocannabinoids Acting on Cannabinoid CB 1, CB 2 and CB 1/CB 2 Heteromer Receptors

Pharmacological Research“Background: Recent approved medicines whose active principles are Δ9Tetrahidrocannabinol (Δ9-THC) and/or cannabidiol (CBD) open novel perspectives for other phytocannabinoids also present in Cannabis sativa L. varieties. Furthermore, solid data on the potential benefits of acidic and varinic phytocannabinoids in a variety of diseases are already available. Mode of action of cannabigerol (CBG), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), cannabidivarin (CBDV) and cannabigerivarin (CBGV) is, to the very least, partial.

Hypothesis/purpose: Cannabinoid CB1 or CB2 receptors, which belong to the G-protein-coupled receptor (GPCR) family, are important mediators of the action of those cannabinoids. Pure CBG, CBDA, CBGA, CBDV and CBGV from Cannabis sativa L. are differentially acting on CB1 or CB2 cannabinoid receptors.

Study design: Determination of the affinity of phytocannabinoids for cannabinoid receptors and functional assessment of effects promoted by these compounds when interacting with cannabinoid receptors.

Methods: A heterologous system expressing the human versions of CB1 and/or CB2 receptors was used. Binding to membranes was measured using radioligands and binding to living cells using a homogenous time resolved fluorescence resonance energy transfer (HTRF) assay. Four different functional outputs were assayed: determination of cAMP levels and of extracellular-signal-related-kinase phosphorylation, label-free dynamic mass redistribution (DMR) and ß-arrestin recruitment.

Results: Affinity of cannabinoids depend on the ligand of reference and may be different in membranes and in living cells. All tested phytocannabinoids have agonist-like behavior but behaved as inverse-agonists in the presence of selective receptor agonists. CBGV displayed enhanced potency in many of the functional outputs. However the most interesting result was a biased signaling that correlated with differential affinity, i.e. the overall results suggest that the binding mode of each ligand leads to specific receptor conformations underlying biased signaling outputs.

Conclusion: Results here reported and the recent elucidation of the three-dimensional structure of CB1 and CB2 receptors help understanding the mechanism of action that might be protective and the molecular drug-receptor interactions underlying biased signaling.”

https://pubmed.ncbi.nlm.nih.gov/32470563/

https://www.sciencedirect.com/science/article/abs/pii/S1043661820312482?via%3Dihub

Cannabinoid Receptor Type 2: A Possible Target in SARS-CoV-2 (CoV-19) Infection?

ijms-logo“In late December 2019, a novel coronavirus (SARS-CoV-2 or CoV-19) appeared in Wuhan, China, causing a global pandemic. SARS-CoV-2 causes mild to severe respiratory tract inflammation, often developing into lung fibrosis with thrombosis in pulmonary small vessels and causing even death. COronaVIrus Disease (COVID-19) patients manifest exacerbated inflammatory and immune responses, cytokine storm, prevalence of pro-inflammatory M1 macrophages and increased levels of resident and circulating immune cells. Men show higher susceptibility to SARS-CoV-2 infection than women, likely due to estrogens production. The protective role of estrogens, as well as an immune-suppressive activity that limits the excessive inflammation, can be mediated by cannabinoid receptor type 2 (CB2). The role of this receptor in modulating inflammation and immune response is well documented in fact in several settings. The stimulation of CB2 receptors is known to limit the release of pro-inflammatory cytokines, shift the macrophage phenotype towards the anti-inflammatory M2 type and enhance the immune-modulating properties of mesenchymal stromal cells. For these reasons, we hypothesize that CB2 receptor can be a therapeutic target in COVID-19 pandemic emergency.”

https://pubmed.ncbi.nlm.nih.gov/32471272/

https://www.mdpi.com/1422-0067/21/11/3809

Acute Inflammation and Pathogenesis of SARS-CoV-2 Infection: Cannabidiol as a Potential Anti-Inflammatory Treatment?

Cytokine & Growth Factor Reviews

“Cannabidiol to decrease SARS-CoV-2 associated inflammation.

Cannabidiol (CBD) is a phytocannabinoid with various clinical applications and has proven efficacy for certain medical conditions, along with a favorable safety and tolerability profile.

Cannabinoids can suppress immune activation and inflammatory cytokine production, suggesting their potential for tempering excessive inflammation.

Therefore, as SARS-CoV2 induces significant damage through pro-inflammatory cytokine storm mediated by macrophages and other immune cells and based on the fact that CBD has broad anti-inflammatory properties, CBD might represent as a potential anti-inflammatory therapeutic approach against SARS-CoV2-induced inflammation.

As CBD is already a therapeutic agent used in clinical medicine and has a favorable safety profile, the results of in vitro and animal model proof-of-concept studies would provide the necessary supporting evidence required before embarking on costly and labor-intensive clinical trials.”

https://pubmed.ncbi.nlm.nih.gov/32467020/

https://www.sciencedirect.com/science/article/pii/S1359610120301040?via%3Dihub

Cannabinomics: Application of Metabolomics in Cannabis ( Cannabis sativa L.) Research and Development

frontiers in plant science – Retraction Watch “Cannabis (Cannabis sativa L.) is a complex, polymorphic plant species, which produces a vast array of bioactive metabolites, the two major chemical groups being cannabinoids and terpenoids. Nonetheless, the psychoactive cannabinoid tetrahydrocannabinol (Δ 9 -THC) and the non-psychoactive cannabidiol (CBD), are the two major cannabinoids that have monopolized the research interest.

Currently, more than 600 Cannabis varieties are commercially available, providing access to a multitude of potent extracts with complex compositions, whose genetics are largely inconclusive. Recently introduced legislation on Cannabis cultivation in many countries represents a great opportunity, but at the same time, a great challenge for Cannabis research and development (R&D) toward applications in the pharmaceutical, food, cosmetics, and agrochemical industries.

Based on its versatility and unique capabilities in the deconvolution of the metabolite composition of complex matrices, metabolomics represents an ideal bioanalytical tool that could greatly assist and accelerate Cannabis R&D. Among others, Cannabis metabolomics or cannabinomics can be applied in the taxonomy of Cannabis varieties in chemovars, the research on the discovery and assessment of new Cannabis-based sources of bioactivity in medicine, the development of new food products, and the optimization of its cultivation, aiming for improvements in yield and potency.

Although Cannabis research is still in its infancy, it is highly foreseen that the employment of advanced metabolomics will provide insights that could assist the sector to face the aforementioned challenges. Within this context, here, the current state-of-the-art and conceptual aspects of cannabinomics are presented.”

https://pubmed.ncbi.nlm.nih.gov/32457786/

https://www.frontiersin.org/articles/10.3389/fpls.2020.00554/full

www.frontiersin.org

Post Marketing Safety of Plus CBD™ Products, a Full Spectrum Hemp Extract: A 2-Year Experience

 Publication Cover“The market for products featuring hemp extracts is large and growing larger. However, safety concerns have been raised by medical and regulatory agencies. Post marketing surveillance of full spectrum hemp extract (FSHE) products manufactured and distributed by CV Sciences (CVSI) and traded under the brand PlusCBD™ was conducted over a 2-year period (2018-2019). The safety of these products was assessed by analyzing adverse events reports.

From a total of approximately five million product units sold during the 2-year period, 1,429 (0.03%) adverse events (AE) were reported in 1,151 unique customers. Of those, only two were classified as serious AEs. For orally ingested products, the most common types of AEs reported were gastrointestinal (e.g. abdominal discomfort), while for topically applied products, the most reports mentioned dermatological symptoms (e.g. rashes). There has been no evidence of liver toxicity associated with CVSI products.

Based on this longitudinal dataset, the products manufactured using CVSI’s proprietary processes are safe and well tolerated at the recommended doses.”

https://pubmed.ncbi.nlm.nih.gov/32449632/

https://www.tandfonline.com/doi/abs/10.1080/19390211.2020.1767255?journalCode=ijds20

Antioxidant and Neuroprotective Effects Induced by Cannabidiol and Cannabigerol in Rat CTX-TNA2 Astrocytes and Isolated Cortexes

ijms-logo“Cannabidiol (CBD) and cannabigerol (CBG) are Cannabis sativa terpenophenols.

Although CBD’s effectiveness against neurological diseases has already been demonstrated, nothing is known about CBG. Therefore, a comparison of the effects of these compounds was performed in two experimental models mimicking the oxidative stress and neurotoxicity occurring in neurological diseases.

Rat astrocytes were exposed to hydrogen peroxide and cell viability, reactive oxygen species production and apoptosis occurrence were investigated. Cortexes were exposed to K+ 60 mM depolarizing stimulus and serotonin (5-HT) turnover, 3-hydroxykinurenine and kynurenic acid levels were measured. A proteomic analysis and bioinformatics and docking studies were performed.

Both compounds exerted antioxidant effects in astrocytes and restored the cortex level of 5-HT depleted by neurotoxic stimuli, whereas sole CBD restored the basal levels of 3-hydroxykinurenine and kynurenic acid. CBG was less effective than CBD in restoring the levels of proteins involved in neurotransmitter exocytosis. Docking analyses predicted the inhibitory effects of these compounds towards the neurokinin B receptor.

Conclusion: The results in the in vitro system suggest brain non-neuronal cells as a target in the treatment of oxidative conditions, whereas findings in the ex vivo system and docking analyses imply the potential roles of CBD and CBG as neuroprotective agents.”

https://pubmed.ncbi.nlm.nih.gov/32443623/

https://www.mdpi.com/1422-0067/21/10/3575

The Cannabis Spread Throughout the Continents and Its Therapeutic Use in History

“Historical relevance: Cannabis sativa L. (C. sativa) is a plant whose use as a therapeutic agent shares its origins with the first Far East’s human societies. Cannabis has been used not only for recreational purposes, but as a food to obtain textile fibers, to produce hemp paper, to treat many physical and mental disorders.

This review aims to provide a complete assessment of the deep knowledge of the cannabis psychoactive effects and medicinal properties in the course of history covering i.) the empirical use of the seeds and the inflorescences to treat many physical ailments by the ancient Oriental physicians ii.) the current use of cannabis as a therapeutic agent after the discovery of its key psychoactive constituent and the human endogenous endocannabinoid system.

Results and conclusion: Through a detailed analysis of the available resources about the origins of C. sativa we found that its use by ancient civilizations as a source of food and textile fibers dates back over 10,000 years, while its therapeutic applications have been improved over the centuries, from the ancient East medicine of the 2nd and 1st millennium B.C. to the more recent introduction in the Western world after the 1st century A.D. In the 20th and 21th centuries, Cannabis and its derivatives have been considered as a menace and banned throughout the world, but nowadays they are still the most widely consumed illicit drugs all over the world. Its legalization in some jurisdictions has been accompanied by new lines of research to investigate its possible applications for medical and therapeutic purposes.”

https://pubmed.ncbi.nlm.nih.gov/32433013/?from_term=cannabinoid&from_sort=date&from_size=200&from_pos=6

http://www.eurekaselect.com/182145/article

Cannabis Phytomolecule ‘Entourage’: From Domestication to Medical Use.

 

Trends in Plant Science: Special issue: Specifi...“Cannabis has been used as a medicine for millennia.

Crude extracts of cannabis inflorescence contain numerous phytomolecules, including phytocannabinoids, terpenes, and flavonoids. Combinations of phytomolecules have been recently established as superior to the use of single molecules in medical treatment owing to the ‘entourage effect’.

Two types of entourage effects are defined: ‘intra-entourage’, resulting from interactions among phytocannabinoids or terpenes, and ‘inter-entourage’, attributed to interactions between phytocannabinoids and terpenes. It is suggested that the phytomolecule assemblages found in cannabis chemovars today derive from selective breeding during ancient cultivation.

We propose that the current cannabis chemotaxonomy should be redefined according to chemical content and medicinal activity. In parallel, combinations of phytomolecules that exhibit entourage activity should be explored further for future drug development.”

https://www.ncbi.nlm.nih.gov/pubmed/32417167

“Cannabis has been used for millennia by humanity for social, ritual, and medical purposes. Humans bred and selected for cannabis strains based on their needs.”

https://www.cell.com/trends/plant-science/pdf/S1360-1385(20)30122-9.pdf?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1360138520301229%3Fshowall%3Dtrue