Nose-to-brain Delivery of Natural Compounds for the Treatment of Central Nervous System Disorders.

“Several natural compounds have demonstrated potential for the treatment of central nervous system disorders such as ischemic cerebrovascular disease, glioblastoma, neuropathic pain, neurodegenerative diseases, multiple sclerosis and migraine.

This is due to their well-known antioxidant, anti-inflammatory, neuroprotective, anti-tumor, anti-ischemic and analgesic properties. Nevertheless, many of these molecules have poor aqueous solubility, low bioavailability and extensive gastrointestinal and/or hepatic first-pass metabolism, leading to a quick elimination as well as low serum and tissue concentrations.

Thus, the intranasal route emerged as a viable alternative to oral or parenteral administration, by enabling a direct transport into the brain through the olfactory and trigeminal nerves. With this approach, the blood-brain barrier is circumvented and peripheral exposure is reduced, thereby minimizing possible adverse effects.

OBJECTIVE:

Herein, brain-targeting strategies for the nose-to-brain delivery of natural compounds, including flavonoids, cannabinoids, essential oils and terpenes, will be reviewed and discussed. Brain and plasma pharmacokinetics of these molecules will be analyzed and related to their physicochemical characteristics and formulation properties.

CONCLUSION:

Natural compounds constitute relevant alternatives for the treatment of brain diseases but often require loading into nanocarrier systems to reach the central nervous system in sufficient concentrations. Future challenges lie in a deeper characterization of their therapeutic mechanisms and in the development of effective, safe and brain-targeted delivery systems for their intranasal administration.”

https://www.ncbi.nlm.nih.gov/pubmed/31939728

http://www.eurekaselect.com/178321/article

Untargeted characterization of extracts from Cannabis sativa L. cultivars by gas and liquid chromatography coupled to mass spectrometry in high resolution mode.

Talanta“Elucidation of Cannabis composition is required to evaluate the potential of this plant for pharmacological uses, but also for implementation in breeding programs with agronomical purposes. The aim of the present study was to develop a method for untargeted analysis of polar and non-polar Cannabis extracts.

For this purpose, extracts from 17 cultivars of Cannabis sativa L. were analyzed by gas chromatography-time-of-flight/mass spectrometry (GC-TOF/MS) and liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC-QTOF MS/MS) in high resolution mode.

One hundred sixty-nine compounds were identified in the extracts by searching MS and MS/MS information. Among identified families, there were mainly cannabinoids, terpenoids, lipids and flavonoids, but also some interesting compounds such as amino and organic acids, among others.

Relative contents of terpenoids and cannabinoids in the same cultivars grown in greenhouse and field were compared. Compositional differences in the profile of terpenoids and cannabinoids between both types of grown conditions were found.”

https://www.ncbi.nlm.nih.gov/pubmed/31816756

https://www.sciencedirect.com/science/article/abs/pii/S0039914019310173?via%3Dihub

Antidepressant active ingredients from herbs and nutraceuticals used in TCM: pharmacological mechanisms and prospects for drug discovery.

Pharmacological Research“Depression is a widespread psychological disorder that affects up to 20% of the world’s population. Traditional Chinese medicine (TCM), with its unique curative effect in depression treatment, is gaining increasing attention as the discovery of novel antidepressant drug has become the pursuit of pharmaceutical. This article summarizes the work done on the natural products from TCM that have been reported to conceive antidepressant effects in the past two decades, which can be classified according to various mechanisms including increasing synaptic concentrations of monoamines, alleviating the hypothalamic-pituitary-adrenal (HPA) axis dysfunctions, lightening the impairment of neuroplasticity, fighting towards immune and inflammatory dysregulation. The antidepressant active ingredients identified can be generally divided into saponins, flavonoids, alkaloids, polysaccharides and others. Albiflorin, Baicalein, Berberine chloride, beta-Asarone, cannabidiol, Curcumin, Daidzein, Echinocystic acid (EA), Emodin, Ferulic acid, Gastrodin, Genistein, Ginsenoside Rb1, Ginsenoside Rg1, Ginsenoside Rg3, Hederagenin, Hesperidin, Honokiol, Hyperoside, Icariin, Isoliquiritin, Kaempferol, Liquiritin, L-theanine, Magnolol, Paeoniflorin, Piperine, Proanthocyanidin, Puerarin, Quercetin, Resveratrol (trans), Rosmarinic acid, Saikosaponin A, Senegenin, Tetrahydroxystilbene glucoside and Vanillic acid are Specified in this review. Simultaneously, chemical structures of the active ingredients with antidepressant activities are listed and their sources, models, efficacy and mechanisms are described. Chinese compound prescription and extracts that exert antidepressant effects are also introduced, which may serve as a source of inspiration for further development. In the view of present study, the antidepressant effect of certain TCMs are affirmative and encouraging. However, there are a lot of work needs to be done to evaluate the exact therapeutic effects and mechanisms of those active ingredients, specifically, to establish a unified standard for diagnosis and evaluation of curative effect.”

https://www.ncbi.nlm.nih.gov/pubmed/31706012

https://www.sciencedirect.com/science/article/abs/pii/S1043661819322601?via%3Dihub

Novel cannabis flavonoid, cannflavin A displays both a hormetic and neuroprotective profile against amyloid β-mediated neurotoxicity in PC12 cells: comparison with geranylated flavonoids, mimulone and diplacone.

Biochemical Pharmacology

“Flavonoids form a diverse class of naturally occurring polyphenols ascribed various biological activities, including inhibition of amyloid β (Aβ) fibrillisation and neurotoxicity of relevance to Alzheimer’s disease.

Cannabis contains a unique subset of prenylated flavonoids, the cannflavins.

While selected conventional flavonoids have demonstrated anti-amyloid and neuroprotective potential, any neuroprotective bioactivity of prenylated flavonoids has not been determined.

We evaluated the in vitro neuroprotective and anti-aggregative properties of the novel geranylated cannabis-derived flavonoid, cannflavin A against Aβ1-42 and compared it to two similarly geranylated flavonoids, mimulone and diplacone, to compare the bioactive properties of these unique flavonoids more broadly.

RESULTS:

Cannflavin A demonstrated intrinsic hormetic effects on cell viability, increasing viability by 40% from 1-10µM but displaying neurotoxicity at higher (>10-100µM) concentrations. Neither mimulone nor diplacone exhibited such a biphasic effect, instead showing only concentration-dependent neurotoxicity, with diplacone the more potent (from >1 µM). However at the lower concentrations (<10µM), cannflavin A increased cell viability by up to 40%, while 10µM cannflavin A inhibited the neurotoxicity elicited by Aβ1-42 (0-2µM), reducing Aβ aggregate adherence to PC-12 cells and associated neurite loss. The neuroprotective effects of cannflavin A were associated with a direct inhibition of Aβ1-42 fibril and aggregate density, evidenced by attenuated ThT fluorescence kinetics and microscopic evidence of both altered and diminished density of Aβ aggregate and fibril morphology via electron microscopy.

CONCLUSIONS:

These findings highlight a concentration-dependent hormetic and neuroprotective role of cannflavin A against Aβ-mediated neurotoxicity, associated with an inhibition of Aβ fibrillisation. The efficacy of the cannabis flavone may itself direct further lead development targeting neurodegeneration in Alzheimer’s disease. However, the geranylated flavonoids generally displayed a comparatively potent neurotoxicity not observed with many conventional flavonoids in vitro.”

https://www.ncbi.nlm.nih.gov/pubmed/31437460

https://www.sciencedirect.com/science/article/abs/pii/S0006295219302990?via%3Dihub

Flavonoid Derivative of Cannabis Demonstrates Therapeutic Potential in Preclinical Models of Metastatic Pancreatic Cancer.

Image result for frontiers oncology“Pancreatic cancer is particularly refractory to modern therapies, with a 5-year survival rate for patients at a dismal 8%.

One of the significant barriers to effective treatment is the immunosuppressive pancreatic tumor microenvironment and development of resistance to treatment. New treatment options to increase both the survival and quality of life of patients are urgently needed.

This study reports on a new non-cannabinoid, non-psychoactive derivative of cannabis, termed FBL-03G, with the potential to treat pancreatic cancer.

In vitro results show major increase in apoptosis and consequential decrease in survival for two pancreatic cancer models- Panc-02 and KPC pancreatic cancer cells treated with varying concentrations of FBL-03G and radiotherapy.

Meanwhile, in vivo results demonstrate therapeutic efficacy in delaying both local and metastatic tumor progression in animal models with pancreatic cancer when using FBL-03G sustainably delivered from smart radiotherapy biomaterials.

Repeated experiments also showed significant (P < 0.0001) increase in survival for animals with pancreatic cancer compared to control cohorts.

The findings demonstrate the potential for this new cannabis derivative in the treatment of both localized and advanced pancreatic cancer, providing impetus for further studies toward clinical translation.”

https://www.ncbi.nlm.nih.gov/pubmed/31396485

“In this study, a flavonoid derivative of cannabis demonstrates significant therapy potential in the treatment of pancreatic cancer, including radio-sensitizing and cancer metastasis treatment potential. The results justify further studies to optimize therapy outcomes toward clinical translation.”

https://www.frontiersin.org/articles/10.3389/fonc.2019.00660/full

“Flavonoids as anticancer agents: structure-activity relationship study.”  https://www.ncbi.nlm.nih.gov/pubmed/12678721

“The antitumor activities of flavonoids.”  https://www.ncbi.nlm.nih.gov/pubmed/16097445

“Anticancer properties of flavonoids: roles in various stages of carcinogenesis.”  https://www.ncbi.nlm.nih.gov/pubmed/21644918

Tandem mass spectrometric quantification of 93 terpenoids in Cannabis using static headspace (SHS) injections.

 Go to Volume 0, Issue ja“The therapeutic effect of Cannabis largely depends on the content of its pharmacologically active secondary metabolites, mainly phytocannabinoids, flavonoids and terpenoids. Recent studies suggest of therapeutic effects of specific terpenoids, as well as synergistic effects with other active compounds in the plant.

Although Cannabis contains an overwhelming milieu of terpenoids, only a limited number are currently reported and used for metabolic analysis of Cannabis chemovars. In this study, we report the development and validation of a method for simultaneous quantification of 93 terpenoids in Cannabis air-dried-inflorescences and extracts.

This method employs the full evaporation technique via a static headspace sampler, followed by gas chromatography-mass spectrometry (SHS-GC-MS/MS). In the validation process, spiked terpenoids were quantified with acceptable repeatability, reproducibility, sensitivity and accuracy. Three medical Cannabis chemovars were used to study the effect of sample preparation and extraction methods on terpenoid profiles. This method was further ap-plied for studying the terpenoid profiles of sixteen different chemovars acquired at different dates.

Our results demonstrate that sample preparation methods may significantly impact the chemical fingerprint compared to the non-treated Cannabis. This emphasizes the importance of performing SHS extraction in order to study the natural terpenoid contents of che-movars. We also concluded that most inflorescences expressed relatively unique terpenoid profiles for the most pronounced terpenoids, even when sampled at different dates, although absolute concentrations may vary due to aging.

The suggested method offer an ideal tool for terpenoid profiling of Cannabis and set the scene for more comprehensive works in the fu-ture.”

https://www.ncbi.nlm.nih.gov/pubmed/31369251

https://pubs.acs.org/doi/10.1021/acs.analchem.9b02844

“Anticancer Terpenoids”

https://link.springer.com/chapter/10.1007/978-3-319-14027-8_5

Targeting Cannabinoid Signaling in the Immune System: “High”-ly Exciting Questions, Possibilities, and Challenges

Image result for frontiers in immunology“It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the “phytocannabinoids” [pCBs; e.g., (−)-trans9-tetrahydrocannabinol (THC), (−)-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances [“endocannabinoids” (eCB), e.g., arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol (2-AG), etc.]. These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc.), and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS), a recently emerging regulator of several physiological processes. The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc. Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis) or in organ transplantation, and to dissect the complex immunological effects of medical and “recreational” marijuana consumption. Thus, the objective of the current article is (i) to summarize the most recent findings of the field; (ii) to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii) to identify open questions and key challenges; and (iv) to suggest promising future directions for cannabinoid-based drug development.

Active Components of Cannabis sativa (Hemp)—Phytocannabinoids (pCBs) and Beyond

It is known since ancient times that consumption of different parts of the plant Cannabis sativa can lead to psychotropic effects. Moreover, mostly, but not exclusively because of its potent analgesic actions, it was considered to be beneficial in the management of several diseases. Nowadays it is a common knowledge that these effects were mediated by the complex mixture of biologically active substances produced by the plant. So far, at least 545 active compounds have been identified in it, among which, the best-studied ones are the so-called pCBs. It is also noteworthy that besides these compounds, ca. 140 different terpenes [including the potent and selective CB2 agonist sesquiterpene β-caryophyllene (BCP)], multiple flavonoids, alkanes, sugars, non-cannabinoid phenols, phenylpropanoids, steroids, fatty acids, and various nitrogenous compounds can be found in the plant, individual biological actions of which are mostly still nebulous. Among the so far identified > 100 pCBs, the psychotropic (−)-trans9-tetrahydrocannabinol (THC) and the non-psychotropic (−)-cannabidiol (CBD) are the best-studied ones, exerting a wide-variety of biological actions [including but not exclusively: anticonvulsive, analgesic, antiemetic, and anti inflammatory effects]. Of great importance, pCBs have been shown to modulate the activity of a plethora of cellular targets, extending their impact far beyond the “classical” (see above) cannabinoid signaling. Indeed, besides being agonists [or in some cases even antagonists of CB1 and CB2 cannabinoid receptors, some pCBs were shown to differentially modulate the activity of certain TRP channels, PPARs, serotonin, α adrenergic, adenosine or opioid receptors, and to inhibit COX and lipoxygenase enzymes, FAAH, EMT, etc.. Moreover, from a clinical point-of-view, it should also be noted that pCBs can indirectly modify pharmacokinetics of multiple drugs (e.g., cyclosporine A) by interacting with several cytochrome P 450 (CYP) enzymes. Taken together, pCBs can be considered as multitarget polypharmacons, each of them having unique “molecular fingerprints” created by the characteristic activation/inhibition pattern of its locally available cellular targets.

Concluding Remarks—Lessons to Learn from Cannabis

Research efforts of the past few decades have unambiguously evidenced that ECS is one of the central orchestrators of both innate and adaptive immune systems, and that pure pCBs as well as complex cannabis-derivatives can also deeply influence immune responses. Although, many open questions await to be answered, pharmacological modulation of the (endo)cannabinoid signaling, and restoration of the homeostatic eCB tone of the tissues augur to be very promising future directions in the management of several pathological inflammation-accompanied diseases. Moreover, in depth analysis of the (quite complex) mechanism-of-action of the most promising pCBs is likely to shed light to previously unknown immune regulatory mechanisms and can therefore pave new “high”-ways toward developing completely novel classes of therapeutic agents to manage a wide-variety of diseases.”

https://www.frontiersin.org/articles/10.3389/fimmu.2017.01487/full

www.frontiersin.org

Chemical characterization of leaves, male and female flowers from spontaneous cannabis (Cannabis sativa var. spontanea) growing in Hungary.

Chemistry &amp; Biodiversity banner

“Cannabis sativa var. spontanea is a spontaneous form of hemp with a low content of psychoactive cannabinoids and can be considered as a valuable source of other phytoconstituents to be used in nutraceuticals or for their health promoting properties.

Chemical data on this hemp variety are rather scarce. In this paper we report a comprehensive phytochemical characterization of leaves, male and female inflorescences of C. sativa var. spontanea growing wild in Hungary.

The results indicated that female inflorescence essential oil contains high amounts of the CB2 agonists (E)-caryophyllene (28.3%) and cannabidiol (CBD) (24.9%), whereas leaves and male inflorescence essential oils contained lower amounts of both compounds. HPLC-MS allowed to quantify CBD and CBD-A in the ethyl acetate extracts from leaves, male and female inflorescences; they were 0.3, 0.8 and 0.9%, and 0.2, 0.3 and 0.4%, respectively. Flavonoids were formed by C-glycosides and glucuronic acids of kaempferol and apigenin, with a total content of 3.8, 6.1 and 7.8 mg/g in methanolic extracts from leaves, male and female inflorescences, respectively.

Based on these results, C. sativa var. spontanea may represent an important source of CB2 agonists and bioflavonoids to be used in nutraceuticals, cosmetics and pharmaceuticals.”

https://www.ncbi.nlm.nih.gov/pubmed/30548994

https://onlinelibrary.wiley.com/doi/abs/10.1002/cbdv.201800562

Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science.

Related image

“Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described.

Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain.

OBJECTIVE:

Review the medical literature for the use of cannabis/cannabinoids in the treatment of migraine, headache, facial pain, and other chronic pain syndromes, and for supporting evidence of a potential role in combatting the opioid epidemic. Review the medical literature involving major and minor cannabinoids, primary and secondary terpenes, and flavonoids that underlie the synergistic entourage effects of cannabis. Summarize the individual medicinal benefits of these substances, including analgesic and anti-inflammatory properties.

CONCLUSION:

There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain-specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease-targeted therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/30152161

Ultrasound-Assisted Extraction of Cannabinoids from Cannabis Sativa L. Optimized by Response Surface Methodology.

Journal of Food Science

“Ultrasonication was used to extract bioactive compounds from Cannabis sativa L. such as polyphenols, flavonoids, and cannabinoids.

On comparing the ultrasonic process with the control extraction, noticeably higher values were obtained for each of the responses.

Additionally, ultrasound considerably improved the extraction of cannabinoids present in Cannabis.

PRACTICAL APPLICATION:

Low frequency ultrasound was employed to extract bioactive compounds from the inflorescence part of Cannabis. The responses evaluated were-total phenols, flavonoids, ferric reducing assay and yield. The solvent composition and time significantly influenced the extraction process. Appreciably higher extraction of cannabinoids was achieved on sonication against control.”

https://www.ncbi.nlm.nih.gov/pubmed/29437231

http://onlinelibrary.wiley.com/doi/10.1111/1750-3841.14075/abstract