Bioactive products from singlet oxygen photooxygenation of cannabinoids.

European Journal of Medicinal Chemistry

“Photooxygenation of Δ8 tetrahydrocannabinol (Δ8-THC), Δ9 tetrahydrocannabinol (Δ9-THC), Δ9 tetrahydrocannabinolic acid (Δ9-THCA) and some derivatives (acetate, tosylate and methyl ether) yielded 24 oxygenated derivatives, 18 of which were new and 6 were previously reported, including allyl alcohols, ethers, quinones, hydroperoxides, and epoxides.

Testing these compounds for their modulatory effect on cannabinoid receptors CB1 and CB2 led to the identification of 7 and 21 as CB1 partial agonists with Ki values of 0.043 μM and 0.048 μM, respectively and 23 as a cannabinoid with high binding affinity for CB2 with Ki value of 0.0095 μM, but much less affinity towards CB1 (Ki 0.467 μM).

The synthesized compounds showed cytotoxic activity against cancer cell lines (SK-MEL, KB, BT-549, and SK-OV-3) with IC50 values ranging from 4.2 to 8.5 μg/mL.

Several of those compounds showed antimicrobial, antimalarial and antileishmanial activities, with compound 14 being the most potent against various pathogens.”

https://www.ncbi.nlm.nih.gov/pubmed/29232588

http://www.sciencedirect.com/science/article/pii/S0223523417309467?via%3Dihub

Cannabinoids for epilepsy: What do we know and where do we go?

Epilepsia

“Over the past decade there has been an increasing interest in using cannabinoids to treat a range of epilepsy syndromes following reports of some remarkable responses in individual patients.

The situation is complicated by the fact that these agents do not appear to work via their attachment to endogenous cannabinoid receptors. Their pharmacokinetics are complex, and bioavailability is variable, resulting in difficulty in developing a suitable formulation for oral delivery. Drug interactions also represent another complication in their everyday use.

Nevertheless, recent randomized, placebo-controlled trials with cannabidiol support its efficacy in Dravet and Lennox-Gastaut syndromes.

Further placebo-controlled studies are underway in adults with focal epilepsy using cannabidivarin. The many unanswered questions in the use of cannabinoids to treat epileptic seizures are briefly summarized in the conclusion.”

https://www.ncbi.nlm.nih.gov/pubmed/29214639

http://onlinelibrary.wiley.com/doi/10.1111/epi.13973/abstract 

Therapeutic Value of Medical Marijuana in New Jersey Patients: A Community Partnership Research Endeavor.

Image result for J Allied Health

“The Public Health Program at Stockton University partnered with the Compassionate Care Foundation to ascertain the impact of medical marijuana on patients in New Jersey.

Results provide insight into the diagnoses for which patients used medical marijuana.

Results indicate increased mood, general overall condition, and energy as the highest consequences; level of pain in the middle range; and most frequent usage as 3 to 4 times a day. Repeated measures done after visit 2 showed eight statistically significant differences for patients after using medical marijuana: an increase in general quality of life, mobility, and mood, with a decrease in inflammation, intraocular pressure, spasms, seizures, and pain.

Results after visit 3 indicated seven significant differences compared to visit 1: decreased seizures, intraocular pressure, spasms, nausea, and pain, along with increased energy and mobility. No differences were found by patient diagnosis or age, but sex-related differences occurred in inflammation, mood, and energy.

Results support positive therapeutic benefits of medical marijuana, and despite methodological limitations, our study contributes to the growing body of literature.”

https://www.ncbi.nlm.nih.gov/pubmed/29202158

 

Novel Peripherally Restricted Cannabinoid 1 Receptor Selective Antagonist TXX-522 with Prominent Weight-Loss Efficacy in Diet Induced Obese Mice.

 Image result for frontiers in pharmacology

“The clinical development of the first generation of globally active cannabinoid 1 receptor (CB1R) antagonists was suspended because of their adverse neuropsychiatric effects. Selective blockade of peripheral CB1Rs has the potential to provide a viable strategy for the treatment of severe obesity while avoiding these central nervous system side effects.

In the current study, a novel compound (TXX-522) was rationally designed based on the parent nucleus of a classical CB1R-selective antagonist/inverse agonist, rimonabant (SR141716A).

TXX-522 showed good binding, CB1R-selectivity (over the CB2R), and functional antagonist activities in a range of in vitro molecular and cellular assays.

In vivo analysis of the steady state distribution of TXX-522 in the rat brain and blood tissues and the assay of its functional effects on CB1R activity collectively showed that TXX-522 showed minimal brain penetration. Moreover, the in vivo pharmacodynamic study further revealed that TXX-522 had good oral bioavailability and a potent anti-obesity effect, and ameliorated insulin resistance in high-fat diet-induced obese mice. No impact on food intake was observed in this model, confirming the limited brain penetration of this compound.

Thus, the current study indicates that TXX-522 is a novel and potent peripherally acting selective CB1R antagonist with the potential to control obesity and related metabolic disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/29051736

https://www.frontiersin.org/articles/10.3389/fphar.2017.00707/full

Therapeutic use of Δ9-THC and cannabidiol: evaluation of a new extraction procedure for the preparation of cannabis-based olive oil.

Image result for Curr Pharm Biotechnol.

“Since 2013 Cannabis-based preparations, containing the two main cannabinoids of interest, Δ9-tetrahydrocannabinol (THC), and cannabidiol (CBD), can be used for therapeutic purposes, such as palliative care, neurodegenerative disorder treatment and other therapies.

The preparations may consist of a drug partition in sachets, capsules or through the extraction in certified olive oil.

OBJECTIVE:

the aims of the study were: a) to develop and validate a new liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method for the identification and quantification of THC and CBD in olive oil; b) to evaluate the extraction efficiency and reproducibility of a new commercial extractor on the market.

METHODS:

the olive oil was simply diluted three consecutive times, using organic solvents with increasing polarity index (n-hexane → isopropanol → methanol). The sample was then direct injected into LC-MS/MS system, operating in Multiple Reaction Monitoring Mode, in positive polarization. The method was then fully validated.

RESULTS:

The method assessed to be linear over the range 0.1-10 ng/µL for both THC and CBD. Imprecision and accuracy were within 12.2% and 16.9% respectively; matrix effects proved to be negligible; THC concentration in oil is stable up to two months at room temperature, whenever kept in the dark. CBD provided a degradation of 30% within ten weeks. The method was then applied to olive oil after sample preparation, in order to evaluate the efficiency of extraction of a new generation instrument. Temperature of extraction is the most relevant factor to be optimized. Indeed, a difference of 2 °C (from 94.5°C to 96.5°C, the highest temperature reached in the experiments) of the heating phase, increases the percentage of extraction from 54.2% to 64.0% for THC and from 58.2% to 67.0% for CBD. The amount of THC acid and CBD acid that are decarboxylated during the procedure must be check out in the future.

CONCLUSION:

the developed method was simple and fast. The extraction procedure proved to be highly reproducible and applicable routinely to cannabis preparations.”

https://www.ncbi.nlm.nih.gov/pubmed/29189144

http://www.eurekaselect.com/157854/article

“Extraction Method and Analysis of Cannabinoids in Cannabis Olive Oil Preparations.”  https://www.ncbi.nlm.nih.gov/pubmed/29202510

Perspectives on marijuana use and effectiveness: A survey of NARCOMS participants.

Home“Interest in and use of marijuana by persons with multiple sclerosis (MS) has increased. While potential benefits have been reported, so have concerns about potential risks. Few large studies have been conducted about the perceptions and current usage of marijuana and medical cannabinoids in persons with MS.

METHODS:

Participants in the North American Research Committee on Multiple Sclerosis (NARCOMS) registry were surveyed in 2014 regarding legality and history of marijuana usage, both before and after diagnosis with MS.

RESULTS:

A total of 5,481 participants responded, with 78.2% female, 90% relapsing disease at onset, and a current mean age of 55.5 (10.2) years. Sixty-four percent had tried marijuana prior to their MS diagnosis, 47% have considered using for their MS, 26% have used for their MS, 20% have spoken with their physician about use, and 16% are currently using marijuana. Ninety-one percent think marijuana should be legal in some form. Men, those with higher disability, current and past nicotine smokers, and younger age were associated with a higher likelihood of current use.

CONCLUSIONS:

The majority of responders favor legalization and report high interest in the use of marijuana for treatment of MS symptoms, but may be reluctant to discuss this with health care providers. Health care providers should systematically inquire about use of marijuana.”

https://www.ncbi.nlm.nih.gov/pubmed/29185555

Antinociceptive effects of mixtures of mu opioid receptor agonists and cannabinoid receptor agonists in rats: impact of drug and fixed-dose ratio.

Cover image

“Pain is a significant clinical problem, and there is a need for effective pharmacotherapies with fewer adverse effects than currently available drugs (e.g., mu opioid receptor agonists).

Cannabinoid receptor agonists enhance the antinociceptive effects of mu opioid receptor agonists, but it remains unclear which drugs and in what proportion will yield the most effective and safest treatments.

The antinociceptive effects of the mu opioid receptor agonists etorphine and morphine alone and in combination with the cannabinoid receptor agonists Δ9-THC and CP55940 were studied in male Sprague-Dawley rats (n=16) using a warm water tail withdrawal procedure.

The ratio of opioid to cannabinoid (3:1, 1:1, and 1:3) varied for each mixture. Drugs administered alone or as pairwise mixtures of an opioid and a cannabinoid dose-dependently increased tail withdrawal latency. Mixtures with morphine produced supra-additive (CP55940) and additive (Δ9-THC) effects, whereas mixtures with etorphine and either cannabinoid were sub-additive. The interactions were not different among ratios for a particular mixture.

The nature of the interaction between opioids and cannabinoids with regard to antinociceptive effects varies with the particular drugs in the mixture, which can have implications for designing combination therapies for pain.”

https://www.ncbi.nlm.nih.gov/pubmed/29183835

http://www.sciencedirect.com/science/article/pii/S0014299917307719

Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA).

Journal of Pharmaceutical and Biomedical Analysis

“Hemp seed oil from Cannabis sativa L. is a very rich natural source of important nutrients, not only polyunsaturated fatty acids and proteins, but also terpenes and cannabinoids, which contribute to the overall beneficial effects of the oil.

Hence, it is important to have an analytical method for the determination of these components in commercial samples. At the same time, it is also important to assess the safety of the product in terms of amount of any psychoactive cannabinoid present therein.

This work presents the development and validation of a highly sensitive, selective and rapid HPLC-UV method for the qualitative and quantitative determination of the main cannabinoids, namely cannabidiolic acid (CBDA), tetrahydrocannabinolic acid (THCA), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN), cannabigerol (CBG) and cannabidivarin (CBDV), present in 13 commercial hemp seed oils.

Moreover, since decomposition of cannabinoid acids generally occurs with light, air and heat, decarboxylation studies of the most abundant acid (CBDA) were carried out in both open and closed reactor and the kinetics parameters were evaluated at different temperatures in order to evaluate the stability of hemp seed oil in different storage conditions.”

Targeting Cannabinoid Signaling in the Immune System: “High”-ly Exciting Questions, Possibilities, and Challenges.

Image result for frontiers in immunology

“It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the “phytocannabinoids” [pCBs; e.g., (-)-trans9-tetrahydrocannabinol (THC), (-)-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances [“endocannabinoids” (eCB), e.g., arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol (2-AG), etc.].

These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc.), and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS), a recently emerging regulator of several physiological processes.

The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc.

Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis) or in organ transplantation, and to dissect the complex immunological effects of medical and “recreational” marijuana consumption.

Thus, the objective of the current article is (i) to summarize the most recent findings of the field; (ii) to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii) to identify open questions and key challenges; and (iv) to suggest promising future directions for cannabinoid-based drug development.”   https://www.ncbi.nlm.nih.gov/pubmed/29176975

“Although, many open questions await to be answered, pharmacological modulation of the (endo)cannabinoid signaling, and restoration of the homeostatic eCB tone of the tissues augur to be very promising future directions in the management of several pathological inflammation-accompanied diseases.”   https://www.frontiersin.org/articles/10.3389/fimmu.2017.01487/full

Acetaminophen Relieves Inflammatory Pain Through CB1 Cannabinoid Receptors in the Rostral Ventromedial Medulla.

Journal of Neuroscience

“Acetaminophen (paracetamol) is a widely used analgesic and antipyretic drug with only incompletely understood mechanisms of action.

Previous work, using models of acute nociceptive pain, indicated that analgesia by acetaminophen involves an indirect activation of CB1 receptors by the acetaminophen metabolite and endocannabinoid re-uptake inhibitor AM 404.  However, the contribution of the cannabinoid system to anti-hyperalgesia against inflammatory pain, the main indication of acetaminophen, and the precise site of the relevant CB1 receptors have remained elusive.

Here, we analyzed acetaminophen analgesia in mice of either sex with inflammatory pain and found that acetaminophen exerted a dose-dependent anti-hyperalgesic action, which was mimicked by intrathecally injected AM 404. Both compounds lost their anti-hyperalgesic activity in CB1-/- mice confirming the involvement of the cannabinoid system.

Our results indicate that the cannabinoid system contributes not only to acetaminophen analgesia against acute pain but also against inflammatory pain, and suggest that the relevant CB1 receptors reside in the RVM.

SIGNIFICANCE STATEMENT: Acetaminophen is a widely used analgesic drug with multiple but only incompletely understood mechanisms of action including a facilitation of endogenous cannabinoid signaling via one of its metabolites. Our present data indicate that enhanced cannabinoid signaling is also responsible for the analgesic effects of acetaminophen against inflammatory pain. Local injections of the acetaminophen metabolite AM 404 and of cannabinoid receptor antagonists as well as data from tissue specific CB1 receptor deficient mice suggest the rostral ventromedial medulla as an important site of the cannabinoid-mediated analgesia by acetaminophen.”

https://www.ncbi.nlm.nih.gov/pubmed/29167401

http://www.jneurosci.org/content/early/2017/11/22/JNEUROSCI.1945-17.2017